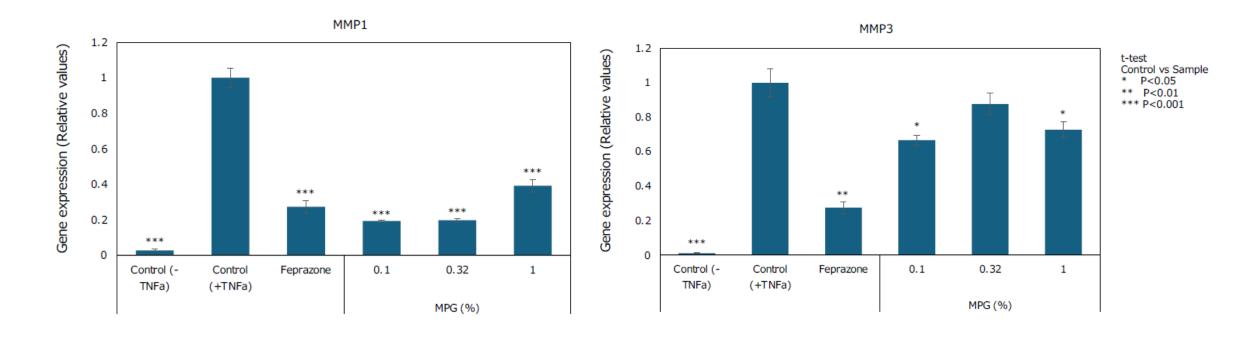

마린 프로테오글리칸(MPG)의 연골 보호 작용

주식회사 일본 베리어프리 2025년 9월 1일

MPG의 연골세포 증식 촉진 작용

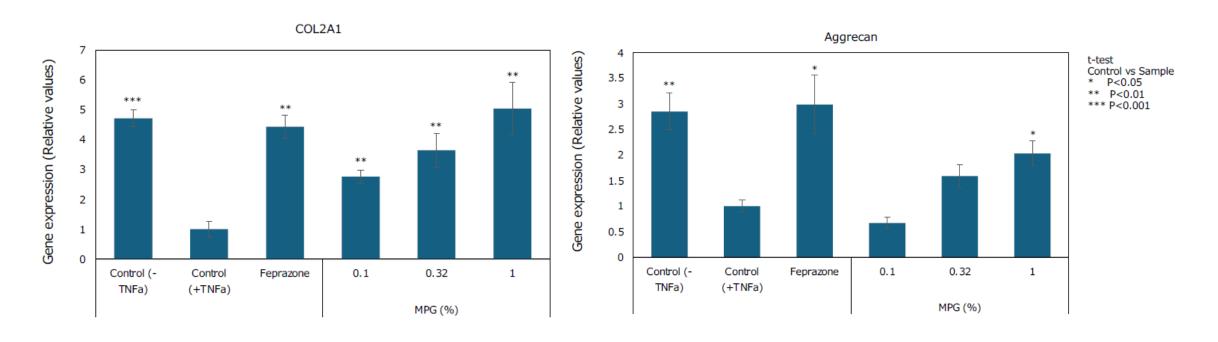
정상 인간 연골 세포에 1%(w/v)가 되도록 연골세포 증식용 배지에 용해하여 여과 멸균한 MPG를 7가지 농도와음성 대조군으로서의 연골 세포 증식 배지를 시험 배지에 첨가하고, 3일간 배양한 후 WST-8법에 의해 생존세포 수를 측정하였다.


누가 증가하여

0.003% 이상의 농도에서 유의하게 생존 세포수가 증가하여, 연골 세포 증식 작용을 갖는 것으로 기대되었다.

MPG의 연골 콜라겐 분해 효소 억제 작용

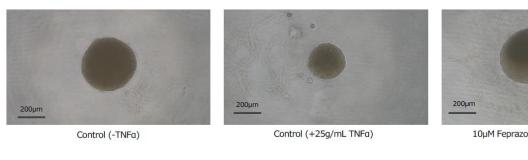
여과 멸균한 MPG 3가지 농도 또는 양성 대조군인 Feprazone을 첨가하여 배양한 연골세포를 TNF- α 를 포함한 배지로 교환하고, 추가로 24시간 배양하여 MMP-1 및 MMP-3의 발현을 분석하였다.



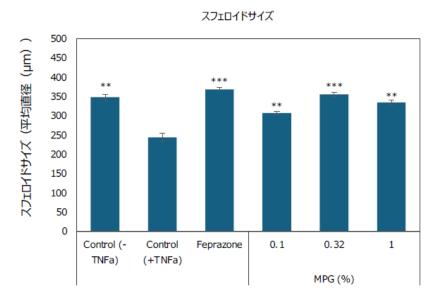
염증성 사이토카인인 TNF- α 의 자극에 의해 유도된 MMP-1 및 MMP-3의 발현이 억제되어, 연골 보호 효과가 기대되었다.

MPG의 연골 합성 효소 발현 저하 억제 작용

여과 멸균한 MPG 3가지 농도 또는 양성 대조군인 Feprazone을 첨가하여 배양한 연골세포를 TNF- α 를 포함한 배지로 교환하고, 추가로 24시간 배양하여 COL2A1 및 Aggrecan의 발현을 분석하였다.

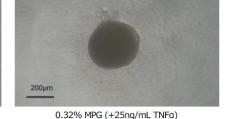


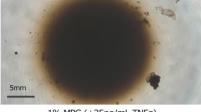
염증성 사이토카인인 TNF-α 자극에 의해 감소한 COL2A1 및 Aggrecan의 발현이 농도 의존적으로 회복되는 것이 확인되었으며, 연골 보호 효과가 기대되었다.



MPG 연골 재생 작용

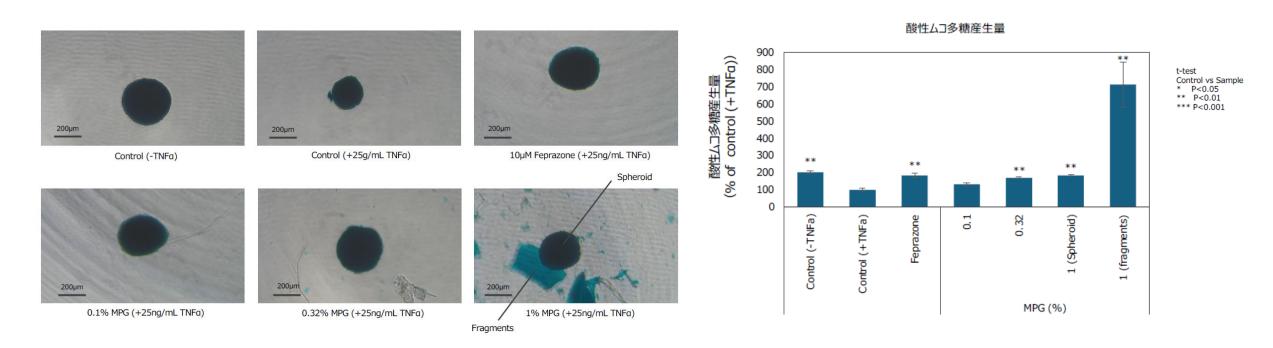
스페로이드 형성용 플레이트에서 MPG를 3가지 농도와 양성 대조군인 Feprazone을 첨가하여 배양한 연골세포를 TNF-α가 포함된 조건에서 추가로 배양하고, 스페로이드 직경을 측정하였다.





t-test Control vs Sample * P<0.05 ** P<0.01 *** P<0.001

200µm 0.1% MPG (+25ng/mL TNFa)


1% MPG (+25ng/mL TNFa)

스페로이드 형성이 TNF-α 미처리군과 동등한 수준으로 나타나 연골 재생이 확인되었으며, 연골 재생 촉진 효과가 기대되었다.

MPG의 산성 뮤코다당 생성 회복 작용

스페로이드 형성용 플레이트에서 MPG를 3가지 농도로 처리하고, 양성 대조군으로 Feprazone을 첨가하여 배양한 연골세포를 TNF-α가 포함된 조건에서 추가로 배양하였으며, 스페로이드의 알시안 블루 염색 및 염색된 알시안 블루의 추출·정량을 수행하였다. (1% MPG 처리구는 갈색 성분과 스페로이드를 분리하여 정량함)

산성 뮤코다당류가 TNF-α 미처리군과 동등한 수준으로 회복되는 것이 확인되었으며, 연골 재생 촉진 효과가 기대되었다.

정리

- ①무자극 상태의 연골세포에서 연골 세포의 증식 촉진 작용이 확인되었다.
- ②염증성 사이토카인인 TNF-α로 자극한 연골세포에서 다음과 같은 효과가 확인되었다.
 - MMP-1 및 MMP-3의 발현 억제
 - · COL2A1 및 Aggrecan의 발현 회복
 - 스페로이드 형성(연골 재생) 및 산성 뮤코다당류 양의 회복이 확인되었다.

MPG는 연골 세포의 증식을 활성화하고, 염증 시 연골세포를 보호할 수 있을 것으로 기대된다.

